The Fischer-Clifford matrices and character table of the maximal subgroup $2^9{:}(L_3(4){:}S_3)$ of $U_6(2){:}S_3$

author

  • A. L. Prins Department of‎ ‎Mathematics‎, ‎Faculty of Military Science, Stellenbosch‎ University‎‎, ‎Private Bag X2, Saldanha‎, ‎7395‎, ‎South Africa.
Abstract:

The full automorphism group of $U_6(2)$ is a group of the form $U_6(2){:}S_3$. The group $U_6(2){:}S_3$ has a maximal subgroup $2^9{:}(L_3(4){:}S_3)$ of order 61931520. In the present paper, we determine the Fischer-Clifford matrices (which are not known yet) and hence compute the character table of the split extension $2^9{:}(L_3(4){:}S_3)$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the Fischer-Clifford matrices of a maximal subgroup of the Lyons group Ly

The non-split extension group $overline{G} = 5^3{^.}L(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in Ly. The group $overline{G}$ in turn has L(3,5) and $5^2{:}2.A_5$ as inertia factors. The group $5^2{:}2.A_5$ is of order 3 000 and is of index 124 in L(3,5). The aim of this paper is to compute the Fischer-Clifford matrices of $overline{G}$, which together with associated parti...

full text

the fischer-clifford matrices and character table of the maximal subgroup $2^9{:}(l_3(4){:}s_3)$ of $u_6(2){:}s_3$

the full automorphism group of $u_6(2)$ is a group of the form $u_6(2){:}s_3$. the group $u_6(2){:}s_3$ has a maximal subgroup $2^9{:}(l_3(4){:}s_3)$ of order 61931520. in the present paper, we determine the fischer-clifford matrices (which are not known yet) and hence compute the character table of the split extension $2^9{:}(l_3(4){:}s_3)$.

full text

on the fischer-clifford matrices of a maximal subgroup of the lyons group ly

the non-split extension group $overline{g} = 5^3{^.}l(3,5)$ is a subgroup of order 46500000 and of index 1113229656 in ly. the group $overline{g}$ in turn has l(3,5) and $5^2{:}2.a_5$ as inertia factors. the group $5^2{:}2.a_5$ is of order 3 000 and is of index 124 in l(3,5). the aim of this paper is to compute the fischer-clifford matrices of $overline{g}$, which together with associated parti...

full text

The Character Table of a Maximal Subgroup of the Monster

We calculate the character table of the maximal subgroup of the Monster N(3B) ∼= 3 + .2.Suz:2, and also of the group 31+12:6.Suz:2, which has the former as a quotient. The strategy is to induce characters from the inertia groups in 31+12:6.Suz:2 of characters of 3. We obtain the quotient map to N(3B) computationally, and our careful concrete approach allows us to produce class fusions between o...

full text

the analysis of the role of the speech acts theory in translating and dubbing hollywood films

از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...

15 صفحه اول

On the Fischer-Clifford matrices of the non-split extension $2^6{{}^{cdot}}G_2(2)$

The group $2^6{{}^{cdot}} G_2(2)$ is a maximal subgroup of the Rudvalis group $Ru$ of index 188500 and has order 774144 = $2^{12}.3^3.7$. In this paper, we construct the character table of the group $2^6{{}^{cdot}} G_2(2)$ by using the technique of Fischer-Clifford matrices.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 5

pages  1179- 1195

publication date 2016-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023